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1. ITOI)UCT'ION August 1983

1. INTRODUCTION

Finite sets of points can be represented by finite lists of points, but it is impossible to represent finite
lists of points with finite sets of points. This is because a set of points has no distinguished member and

therefore it is impossible to define a function which maps a set of points to a "first" point in that set. While

this simple observation seems straightforward and correct, it is very difficult to prove. What is meant by
1represent" or by "a distinguished member"? Intuitively a list has more structure or contains more
information than a set. But what does this mean? One approach to defining the meaning of
"representations", "distinguished members" and "more structure" is to study the general nature of
mathematical objects (such as sets and sequences). One approach to the general nature of mathematical

objects is set theory. Symmetric set theory is a new set theory which provides simple universal definitions of

the above notions.

Currently the most widely studied formal theory of mathematics as a whole is Zermello-Fracnkel set
theory (ZF) and its variants. The primary difference between ZF set theory and symmetric set theory involves

points. A point is an object which has no members (and is thus not a set). In ZF set theory there is only one
point (the null set) while symmetric set theory requires the existence of many points. The following

discussion of this issue is from the introduction to Foundations of Set Theory by Fraenkel, Bar-tillel, and
Levy [Fraenkel et. al. 581 (they refer to points as individuals).

Let us refer to those elements which have members as sets and to those elements which have no
members as individuals ...

'he existence of at least one individual is called for by both philosophical and practical reasons.
... Let us, however, stress that referring to one of the individuals as the null set is done only for reasons
of convenience and simplicity, and can be regarded as a mere notational convention.

Having decided that we need an individual we now face the question of whether we need more
than one individual. It turns out that for inatliemajtical purposes there seems to be no real need for
individuals other than the null set. Therefore we shall not admit any such individuals into ZF.

While it is true that most mathematics can be done in a framework where the null set is the only
point there are notions which are best defined in a framework where many points arc present. For example
every mathematical object seems to have a natural notion of isomorphism associated with it. There is a
natural notion of what it means for two Turing machines, or context free grammars, or topological spaces to
be isomorphic. ZF set theory provides no satisfactory general notion of isomorphism. 'The terms
"representation", "distinguished element", and "more structure" are very hard to define in a framework

where only one point is present. However these notions can be given simple universal definitions in the

presence of many points.

The notion of isomorphism can be approached from two different directions. The first is to extend
standard notions of isomorphism for particular types of objects to a notion of isomorphism for arbitrary sets

which arc built up out of points. This type of isonmorphism will be called a structural isomorphism. 'lihe
second approach to the notion of isoniorphism is to consider the symmetries (autonmrphisms) of a universe
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<U EX A pair <U C> is a universe of objects where U is a universal domain and E is a binary relation on U

%here xEy is read "x is an element of y". A point of<U C> is an element p of Li such that there is no x in U

such that xEp. Thc universe of symmetric sets has lots of points and lots of autoniorphisms. In particular

there is a natural one to one correspondence bctwccn the the permutations of the points of <U C> and the

automorphisms of <U E> (since ZF set theory allows only one point there are no non-trivial symmetries of

<U E> in ZF set theory). In the theory of symmetric sets it can be shown that two objects x and y are

structurally isomorphic just in case there is an automorphism (a symmetry) of<U E> which maps x to y. This

result justifies the intuition that isomorphic objects are indistinguishable.

Philosophers of mathematics have observed that mathematical descriptions of structures such as the

natural numbers do not determine the identity of those structures [Blenacerraf 651. The best one can hope to

do is to determine identity "up to isomorphism". 'Ihe theory of symmetric sets reflects this observation. A
specification for a particular object x might be a sentence (P such that 0(y) holds just in case y is x. However

consider any first order formula 4 of one free variable whose only non-logical symbol is C. If x and y are

isomorphic objects then there is a symmetry of<U E> which maps x to y and thus D(x) holds in <U E> just in
case 4)(y) holds in <U E. Thus if there are several different objects %hich are isomorphic to x then no such

sentence 0 can name x. In the theory of symmetric sets there are always many objccts which are isomorphic

to x.
The theory of symmetric sets provides a simple and natural measure of the "abstractness" of objects.

A more abstract object is an object with "less stnicture". A precise definition of this notion can be
approached in three different ways. First the symmetries of the universe of symmetric sets greatly restricts the

predicates and functions which can be defined in terms of tile structure of <U E>. A function F will be called
essential if it commutes with any symmetry (automorphism) of <U E>, i.e. for any symmetry p of <U E> and

any element x of U, p(F(x)) must equal F(p(x)). Given two elements x and y of U there may not exist any
essential function F which maps x to y. For example there is no essential function which maps a set of points
to an element of that set. An object y is called an abstraction of an object x just in case there is an essential

function F which maps x to y. This notion of abstraction can also be approached by studying tie symmetries

of particular objects. The symmetry group of an object x. denoted A(x), is the set of all automorphisms of

<U E) which lease x fixed. Tie notion of an abstraction call also be defined by saying that y is an abstraction
of x just in case A(y) contains A(x). A third approach to tie notion of abstraction is via the notion of

contextual isomorphism and tie general notion of a "canonical" object. Two objects x and y are said to be
isomorphic in the context of"/.just in case there is a symmetry ofi. which maps x to y. For example consider a

circle and two points p and q which are in tie sane plane is tile circle. The points p and q ire isomorphic in
the context of the circle just in case they are the same distance from the center of tile circle. An object y is said

to be calnical in the context of an object z jut inl case the isomorphisin class of y in the context of ,. lyJ7, is a
singleton sot (there is no canonical point oI it circle or canonical corner on it square). It turns out that y is an

a, straction of x just in case , is canonical in tile context of x.

Given tile above notion of'abstractness it is possible to provide a precise notion of "representation".

IFor exampl' finite sQts can be repte-sented ais finite sequences hecau,,c there ik n1 esScnti.il function , hich
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maps any sequence to to the corresponding set. However it is easy to show (hit there is no essential function
which maps finite sets of points to finite sequences of points. Thus sequences can not be reprcscnted as sets.

Mathematics is often done in the framework of some fixed but arbitrary contcxt. Intuitively a
context is a collection of objects which are taken to be fixcd during tie course of a mathcmatical discussion.
The natural numbers, the real numbers, and the empty set are all usually assumed to be fixed objects even
though their "true identity" can not be specified. The result relating essential functions, symmetry groups.
and canonical objects can be generalized to account for context.

In addition to the different treatment of points there is another less important distinction between
symmetric set theory and ZF set theory. The axioms of ZF set theory are (an infinite number o) sentences of
first order logic while the axioms of symmetric set theory are precise conditions on the universe <U E> which
are stated in English rather than first order logic. Thus symmetric set theory avoids all of the clumsiness of
first order logic. Furthermore it is shown in an appendix that a simple extension of the axioms of symmetric
set theory specify the structure of <U E> up to isomorphism, something which could never be done in first

order logic.

t
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2. TIlE AXIOMS OF SYMMETRIC SET THEORY

In deciding on axioms for a universe of mathematical objects there are several considerations. First
the axioms should be as clear, simple, and natural as possible. Second, since ZI: set theory is well established

the axioms should not differ unnecessarily from ZF set theory. Finally, and most interestingly, the axioms

should provide a basis for defining universal notions of isomorphism. abstraction, and representation.

However one should not expect to immediately see how the axioms of symmetric set theory provide a basis
for general notions of isomorphism, abstraction, and representation. These notions can be defined only after

the consequences of the simple set theoretic axioms have been investigated.
No proof of the consistency of the axioms of symmetric set theory is presented in this section.

However it is shown in an appendix that the consistency of the axioms is equivalent to the existence of a

strongly inaccessible cardinal. The appendix also shows that any universe satisfying the axioms is determined
up to isomorphism by a "height" and a "width" where the height can be any strongly inaccessible cardinal

and the width can be any cardinal at least as large as the height. Thus if there are strongly inaccessible

cardinals then there are many different (non-isomorphic) universes satisfying the axioms. ihere is however a
unique (up to isomorphism) inininal universe <U E> whose height and width are both the least strongly

inaccessible cardinal. Throughout the following sections however the universe will be taken to be some fixed
but arbitrary model of the axioms.

2.1. The Nature of the Universe <U E>

The universe of symmetric sets is taken to be a pair <U E> where U is some domain and E is a

binary relation on U. Some elements of U can be thought of as sets in the standard way. For example

consider the pair <U E> given as follows:

U is the set [a b c d e fl. The relation E is given by:

aEd bEd cEd

aEe bEe

aEf cEf

In this situation a, b. and c are points.

Definition: A poinl is an clement p of U which has no members, i.e. xqp for all x in U.

In the above example the element d represents the set (a h cl. e represents the set (a bl, and f
represents the set {a c). Note that the relationship between d and the set {a b c} is given by the relation E

S. ..
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and can not be defined purely in terms of the set U or the clement d. Not all subsets of U need have

representations in U. In the above example there is no representation for tie set le fl.

Definition: A subset C of U is represented in <U E> just in case there is an clement z of U
such that xEz just in case x is in C; in this case z is called a representation of C.

It is important to note that tie notion of representation expressed in tie above definition is not the

same as tie notion of representation intended in the title of this paper. A more general notion of

representation will be presented section four. However in this section the term "representation" will be used

only in the sense given in tie above definition.

The axioms of the theory of symmetric sets imply that the universe U is not empty. While a special

axiom to this effect is not needed, the fact that U is not empty will be emphasized with an explicit axiom.

Axiom zero: U is non-empty.

lc first axiom of symmetric set theory is that representations are unique.

Axiom One. Extensionalil,: Representations of non-empty sets are unique, i.e. for any
non-empty subset C of U there is at most one element x of U which represents C.

The universe <U E> should be thought of as containing representations for tuples, functions, and

relations as well as representations for subsets of U. For example if x and y arc elements of U then z will be

called a representation for the pair (x y> just in case z represents die set Ix Ix y)), or more precisely z

represents a set {x w} where w represents the set {x y}. Functions and relations are represented by sets of

tuples in the standard way (or more precisely a function is represented by a set of elements of U each of which

represents a tuple). Again the tenn "representation" is being used here in a different sense from that

intended in the title of the paper and a more gencial definition is given in section four.

2.2. The Comprehension Axioms

Given the above axioms it is possible that U contains only points, i.e. that no element of U

represents a non-empty subset of U. Axioms that require that certain non-empty subsets or U be represented

in <U E> are called comprehension axioms. The first comprehension axioxn makes use of the following

definition:

Definition: A subset C of U will be called smail just in case there is some subset C' of U
which is represented in <U E> such that the cardinality of C' is as big as tile cardinality of C.
A subset C of U which is not small will be called large.

I

-i,
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By definition every subset C of U which is represented in <U E> is sinall. However it has not been

guaranteed that every small subset of U is represented in <U E>. 'Ibis is the first comprehension axiom.

Axiom Two Strong Comprehension: Every small subset of U is represented in U E>.

The above comprehension axiom implies that the cardinality of a subset C of U determines whether

or not C is represented in <U E>. If C is small then it is represented in (U E> if it is large then it is not. Ibis

leads to the following lemma:

Lemma 21: If two element sets are small then for any small subsets C and C' of U all
functions from C to C' are represented in <U E>.

Proof An ordered pair <x y> of elements of U is taken to be the set {x Ix y}}. Thus if two element
sets are small any ordered pair of elements of U is represented in <U E). Any function from C to
C' is a set of such pairs with the same cardinality as C and is therefore a small subset of U.

One model of the above comprehension axiom is a universe <U E> where U is infinite and a

non-empty subset C of U is small just in case it has less than seven members. To rule out such a universe

some further axioms are needed.

Axiom Three, Infinity: There exists an element of U which represents a countably infinite
subset of U.

Axiom Four. Power Set: If a subset C of U is small then any subset of U with the cardinality
of the power set of C is also small.

Axiom Five, Union: A small union of small sets is small, i.e. for any family Fof subsets of U
if F is small (has cardinality less than or equal to some small subset of U) and if each set in F
is small then the union of all sets in Fis also small.

There is one final comprehension axiom which does not correspond to any axiom of ZF set theory.

This final axiom will turn out to be important in later sections.

Definition: P(U) is the set of all points in <U E>.

Axiom Six. Point Comprehension: P(U) is large.

This axiom implies that for any small subset C of U there is a set ofpoints C' which is the same size

as C. Since both C and C' are small lemma 2.1 implies that the bijections (one to one onto functions) from C
to C, are represented in <U E>. 'hus any small set can be "identified" with a set of points.
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2.3. The Foundation Axiom

The Foundation axiom is the final axiom of the theory of symmetric sets. It states that there arc no

infinitely decreasing membership chains.

Axiom Seven, Foundation: There is no infinitely decreasing sequence of elements of U, i.e.
there is no infinite sequence x13 x2 3x 3 ) ...

'Fhe foundation axiom has important implications. It implies that there is no element x of U such

that xCx (otherwise the infinite sequence all of whose elements were x would be an infinite decreasing

sequence). In fact there can be no containment loops, i.e. no sequence x1Cx 2 E ... xn such that xn Ex. 'Tlie

foundation axiom is equivalent to the statement that every subset C of U contains a lower bound under E, i.e.

any subset C of U contains a lower bound x such that there is no y in C such that yEx. 1'he foundation axiom

can also be characterized in terms of the transitive closure of E.

Definition: The binary relation E + is defined to be the transitive closure of C, i.e. for any

two elements x and y of U. yE + x just in case yEx or there is sonic finite sequence 71, z2.

zn such that yEzlEz2 E ... znEx.

The foundation axiom ensures that the relation E + is a partial order on U and that E + is well

founded. The fact that E + is a well founded partial order on U allows one to define functions on U by

recursion on E +. For example it is possible to define a function P which maps every element of U to its

underlying set of points. This finction is defined by recursion on E + as follows:

Definition of thefunction P:

P(q) = {q} for any point q

P(x) = UyCxP(Y) for any non-point x

lus for any element x of U we can talk about the points P(x) of the element x. Note that P(x) is

always a subset of U rather than being any particular element of U (in fact P(x) is always a subset of P(U), the

set of all points). It is not immediately obvious that fir any element x of U the set P(x) is small and therefore

represented in (U E>. However this does follow from the axioms prseated so far.

Theorem 2.2: For -my clement x of U, the set P(x) is small.

Pro(!f The proof is by induction on C + . For a point p the set P(p) is just {p} A hich is clearly
small. Now considei any element x of U which is not a point and such that for every y such that

yE + x, 1'(y) is small. I(x) equals the union over yEx of P(y) and therefore P(x) is a small union of
small sets and Must bc small.

4
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3. ISONIORIPIISMS

A point is that which has no part.

- Euclid

It seems that every precisely dlefined object has a natural notion of isoniorphismi associated with it.

For example graphs, context free grammars, Thuring machines, and topological spaces all have a natural

associated notion of isomorphism. All of these notions of isomorphisin are batsed onl identifications between

the points of one object and the points of another. This observation mioti~ates a notion of structural

isomorp~hism defined for arbitrary elements of the universe (U C> of nmathemnatical objects.

It is intuitively clear that isoniorphic mathematical objects arc in some sense identical. The strongest

sense in which two elements x and y of U can be identical is if there is some symmetry (automorphisin) of

(U E> which maps x to y. It turns out that under the aforementioned notion Of structural isomorphism two

objects arc structurally isomorphic just in case there is a symmetry of(<U C) which maps one to the other.

The nlotion of isomlorphism can be generaliized to take into account an arbitrary but fixed context.

At one level any two points p and q are isomorphic. I owever if p and q appear in somec fixed context then p
and q need not he considered isomorphic. For example p and q are isomorphic in the context of the set
{p q Ir s)} hut they- are not isomlorphic in the context of the set {p {q r}}. It tuns out that for any elemnent z

of U which is Laken as a fixed context there is a natural and general definition for when two elements of U are

isomlorphic in the context of z.

'[he universe (U C> is intended to be a model of the universe of all mathemnatical objects. For this

reason the tei-m "object" % ill be used as a synonym for the phrase "an element of U'.

3.1. The Symmetries of(<U E>

An automorphism or symmetry of <U E> is a one to one onto map p fromn U to U (a permutation of

U) such that for any x and y in U, p(x)Ep(y) just in case xEy. It can be shown that for any symmetry p of
<U C> and any object x, p(x) is a point just in case x is a point. Thus for any symmetry p of <U E> the
restriction pJP)(U) of p to the points IN U) is a one to one onto map fromn PR( ) to II(U), i.e. pj)( U) is a

permttation of IN U). [he first important thcorem concerning the symmeitries of(<1L C> is that each symmetry
is determined by its corresponding permutation of P(U).

Theorein 3.1: If p and p' are two symmetries of(<U C> suich that pjlN(U) equals p'jI)(U) then
p equal-; P'.

Pr, ij:.h le proo f is. h) ind1o00oril C,4'. By asso up11tion p and p, are the same funutionl onl points,.
('o;,iocr an x in U. ,tch thot p mid 1) ha;1% thde SMaCN JLI Oalo 11 I elements Ot I skich tha1t yC + X
silwC P p i e-w s the ncinher'! ip re l 0he SCt repfeSC1tCd h 1)(X) equl(Ms jp(v): yC x).
Sit r ,1.v the 1,1I-ilCt , re 1 -wilete hy frI ') equaI'ls IpA\) s1 utsncpad 'ae;esaefnto
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on all yE+x, p(x) and p'(x) must represent the same set. 'lhus by extcnsionality p(x) must equal
p'(x).

Any symmetry of<U E> determines a permutation of P(U) and theorem 3.1 shows that the induced

permutation of P(U) uniquely determines the symmetry. It can also be shown that ever) permutadon of P(U)

corresponds to a symmetry of<U E.

Theorem 3.2: Any permutation p of P(U) can be extended to a s)mmetry of<U E.

Proof L.et p be any permutation of P(U). The extension of p to all of U is defined by induction on

E + via the following relation:

p(x) = the representation of {p(y): yEx}

The set {p(y): yEx} is guaranteed to be represented in <U E> because it can be no larger than the
set represented by x. It follows from the above equation that if yEx then p(y)Cp(x) and further if
p(y)Ep(x) then yEx. It remains only to show that the extension of p to all of U is one to one and

onto. Consider the inverse permutation p'I of P(U) and the extension of this inverse to all of U. It

can be shown by a standard induction on E + that p I(p(x)) equals x for all x in U and thus the

extension of p is one to one. Similarly it can be shown that p(p'l(x)) must equal x and thus the
extension of p is onto.

Theorems 3.1 and 3.2 imply that there is a natural one to one relationship between the permutations

of the points P(U) and die symmetries (automorphisms) of (U E>. In classical set theory there is only one

point and there is only one symmetry of<U E>, namely the identity function.

If there is a symmetry of<U E> which maps x to y then x and y are truly indistinguishable. More

concretely let 0 be any first order formula of one free variable whose only non-logical symbol is E. If there is

a symmetry of(U E> which maps x to y then 4(x) holds in <U E>just in case 0(y) holds in <U E).

Theorem 2.2 says that for any object x the set P(x) is small and thus P can be thought of as a

mapping from U to U. A simple induction on E + can be used to show that the mapping P commutes with

symmetries of<U E>, i.e. that for any symmetry p of(U E> and any object x, P(p(x)) equals p(P(x)).

Lemma 3.3: For any symmetry p of<U E> and any object x, P(p(x)) equals p(P(x)).

3.2. Structural Isomorphisms

l'iere is a natural definition for what it means for two graphs. or languages, or lists of points to beI(
isomorphic. All of these objects can be represented by elements of U and it would be nice if the notion of

isomorphism which is defined for elements of U corresponded to the natural notion of isomorphism for such

objects. This observation leads it) the definition of structural isomorphism presented below.

Any two points have the same structure simply because neither hds any structure. I ,,rger objects are

* -*]
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stnicturally isomorphic just in case there is an identification between tile points ol thle objects -Ahich preserves

the structure of those objects. For example let p, q. r. and s be any four distinct points. T[he set (p qJ is

isomorphic to the set {r s), but not the set I{r s p). In fact any two sets of pujitas arc isomorphic just in case

they have the same number of elements. The triple (p p q> is isomorphic to tie triple <r r s> but not to the

triple <r s s>.

To define the notion of structural isomnorphism precisely it is ncecssary to build up some

terminology. Let C be any set of points. IJ(C) is defined to be the set of all elements x of U such that P(x) is a

Subset of C. Tlhus U(C) is the set of objects which are built uip out of the points in C. Let p be any function

mapping C ito arbitrary points. Any such function p can be extended to a function p' defined on all of U(C)
via the following inductive definition:

p'(p) = p(p) for points p

p'(z) = The representation of {p'(y): y~z} for any non-point z in U(C).

F:or examplc if p(p) is r and p(q) is s then p'((p q>) is (r s>. Thus the function p' "replaces" the

points of an objcct by their image under p. 1- the inductive definition of p'(z) the Set {p'(y): yC7) is

guaranteed to be represented in (U C> because it can be no larger than the set rcpresented by z. In the

following discussion any function p defined on the points C will be assumned to be defined in the above way

Onl all of U(C).

Dcfiniiw: A structural isomorplusmn between two elements x and y of U is a bijection p
from P(x) to P(y) such that p(x) equals y (any function defined onl P(x) will be assumed to be
defined on x via the above relation). '[he elements x and y are said to be st'ructurally
isoumorpIhicjust in case there exists a structural isonmorphism between themi.

As an example let a group <0 0 be a pair of a set of points G and a function 0 fromn 0 XO to G
satisfying thle standard axioms for a group. Notice that P((0 o>) equals G. Now consider two group- (0 a>

and (G' -'> and let p be any bijection from 0 to G'. Clearly p(G) equals 0' so p((G ->) equals <G' p(o)>.

TIhus the hijection p is a structural isomorphism between (G a> and (G' o'> just in case p(o) equals o'. Since

functions are represented by sets of tuples an elemient of o is a triple of points (p q r> where r is the value of
poq. Thuis p(o) is a set of triples of the form (p(p) p(q) p(r). T[he set of triples p(a,) will equal the set of

triples -' just in case for any triple (p q r> in -the triple (p(p) p(q) p(r)> is in o'. i.e. just in case p(r') equals
p(p)o'p(q). TIhis statement is equivalent to the condition that p(p)o'p(q) equals p(peq) which corresponds to

the standard notion of isomo~rphismn between groups.

'[hle notion of a structural isomorphism can be related to the s) mmeitries of (U 0. It has already

been shown thatz there is at natural one it) one correspondence bctweeni thle autonmorphisms of'< (LC> and thle
PCMlLII.Itiotll 01T U). 'I hie f0110" ing theorem relates hijvctions between sets of' points and permutations of
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Tlorem 3.4: Any bijection between two small sets of points can be extended to a
pernutation of all of P(U).

ProvfSketch: I.et C and C' be any two small sets of points and let p be any bijection from C to C'.
I.ct p be any member otteither C or C'. Since C and C' need not be disjoint p may be in both C and

C' and thus both p(p) and p-l(p) may be defined. In general any point p in either C or C' is

contained in some minimal chain of the form ... p- (p-I(p)). pl(p), p.p(p).p(p(p))... (more
prcciscl, the minimal chain containing p is the least subset of CUC' which contains p and is closed

under p and p-1). The minimal chain containing p can be one of four types. First it might be a
loop, in which case p is already a permutation of the minimal chain containing p. Second it might
be infinite it both direction in which case p is also already a permutation of the chain. Ibird the
chain may have a "first" member which is in C but not in C' and a last member which is in C' but
not in C. Finally the minimal chain containing p may ha'e only one endpoint, either a starting
point or an ending point. In these cases p is not a permutation of the minimal chain containing p.
To rcmedy this situation one can extend the function p to more points and convert any chain of the
these last types into either a cycle or a chain which is infinite in both directions. To make such an
extension there must be cnough points in P(U) which arc not in C or C'. But since both C and C'
arc assumed to be small this last condition can be readily shown.

'he main result of this section can now be proven.

Theorem 3.5 Two elements x and y of U are structurally isomorphic just in case there is a
symmetry of<U E> which maps x to y.

Proof If x and y are structurally isomorphic then there is a bijection p from P(x) to P(y) which
maps x to y. Any extension ofp to more points will still map x to y. Thus theorem 3.4 implies that
p can be extended to a permutation of P(U) which maps x to y. On the other hand if itere is a
pennutation p of 1)(U) which maps x to y lemma 3.3 implies that l(p(x)) equals p((x)) so p(l1(x))
equals P(y) and thus p maps 1(x) onto P(y). l'hus the restriction of p to P(x) is a bijection fron P(x)
to P(y) which maps x to y.

"'r:eorem 3.5 demonstrates that the two natural notions of isomorphism between symmetric sets

coincide. Thus there is never any ambiguity in what is meant by two elements of U being isomorphic.

3.3. Symmetry and Contexttial isomorphisms

Since there is a natural notion of isomorphism for elements of U there is also a natural notion of

automorphism or symnmetry. For example there are two structural symmetrics of {p q}, the identity map on

the points p and q and tie function which exchanges p and q. Since any strtuctural isoniorphism can be

extended to a s) umetry of <U E> there is no need to distinguish between stnctural isonorphisms and

permiuitations otf P(| L).

I)efinitio,: '1 he symnmetry group of an object x, denoted A(x), is the set of all penntutations

p ofl I'(U) stch that p(x) equls x.

I here is a Contextual notion oif isomorphism where two objects x and y ,ic isomorphic ii a cte)lxt t
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just in case x and y bear exactly the same relationship to/. For example let z be the set {p q {r s} where p, q,

r, and s are points. Clearly the point p is just like the point q with respect to z (both p and q are members ofz

and neither is a member of a member of z). Similarly the point r is just like the point s with respect to z. On

the other hand p is not like the point r since p is a member of z while r is not.

As another example let y be the set {<p q> <q r> <r p>}. This represents a directed graph with nodes

p. q, and r and edges from p to q. q to r, and r to p. In other words y represents a cyclic directed graph of

three nodes. Notice that every node of y looks like every other node. More precisely y has three structural

symmetries corresponding to three rotations of the graph. For any two nodes there is a rotation which maps

one to the other.

Definition: Two objects x and y will be called isomorphic in the context of an object z just in
case there is a symmetry p of z such that p(x) equals y. The set of things isomorphic to y in
the context of z will be denoted JyIz.
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4. ABSTRACTION, REPRESENTATION, AND OTlHER APPLICATIONS

There is an informal distinction in mathematics between essential and contextual properties. For
example consider an open set of some topological space. 'I'hc fact that the set is open is a contextual property

of diat set while the cardinality of the set is an cssential property. In the framework of symmetric sets this

distinction is easily made precise. Any two isomorphic objects have the same cssential properties. An

essential predicate 0 is any predicate on U such that 0(x) is equivalent to 0(p(x)) for any object x and point

permutation p. An essential function is one that commutes with autornorphisms of <U E>, i.e. F(p(O)) always

equals p(F(x)).

In mathematics one often encounters a notion of a "canonical" or "natural" transformation or

relationship. For example a set of points has no natural or canonical element, there is no natural or canonical

point on a circle, and a square has no canonical corner. On the other hand one can choose a canonical

element of ain ordered pair. One particularly well known example is the dual space of a linear vector space.

The dual space D(X) of a linear vector space X is the set of linear functions from X to scalars. If there is a dot
product operation * defined on X then there is a natural isomorphism between X and D(X) where the linear

function associated with a vector x is Xy.xy. Ilowever if no dot product operation is specified for X then

while X and I(X) are still isomorphic there is no natural or canonical isomorphism. On the other hand there
is always a canonical or natural isomorphism between X and )(1)(X)). A simple and natural definition for

this notion of canonical is given by saying that y is canonical in the context of x just in case the isomorphism

class of y in the context of x, JYJx, contains only one object.

Ilic theory of symmetric sets provides a simple general measure of the abstractness of objects. An

object y can be said to be an abstraction of an object x just in case any one of the following three conditions
hold: A(y) contains A(x). JyIx is a singleton set, or y equals F(x) for some essential finction F. It turns out that

these three criterion are equivalent and there is no ambiguity in what is meant by y being an abstraction of x.

There are many representation theorems in mathematics. For example every loolean algebra can
he represented by an a!gebra of sets. Of course the notion of a representation is also heavily used in computer

science where alphabets are represented as binary codes and sets are represented as lists. This raises the

natural question of what is mreant in general by a representation. The theory of symmetric sets provides a

natural framework in which to develop a general theory of representation.

Mathematicians often talk about fixed but arbitrary structures which form a context in which to

investigate other structures. For example the natural numbers are assumed to be a fixed set even though their

"true identity" can never be specified. The same holds for the real and complex numibers. Another example

of contextual objects are the fixed constants "true" and "false" which are used in discussions of logic. Still

another example from logic is die fixed but arbitrary alphabet from which the sentences of logic arc

constructed. Even the "empty set" can be viewed as an object which is taken to be fixed but whose identity is
never specified. The general notion of a context can be handled in a natural way in the theory of sN nuletric
sc,%. A context is an object z (which may have lois of internal structure) itch is "taken to be fixed". 'ihis

I,
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means that only symmetries of z are considered when talking about isomorphisms, symmetry groups, essential

properties, and canonical objects.

4.1. Essential Functions, Canonicality, and Abstraction

The set (p q} can be thought of as essential property of the pair <p q>. That is to say that given a

pair of points one can derive in a natural way a set of two points. The reverse does not seem to hold, given a

set of two points there is no natural or canonical way to derive a pair of two points. Similarly given a point p

there is no natural or canonical set of two points which contains p. Conversely given a set of two points there

is no natural or canonical element of that set. Recall that for any objects y and z, JyI is die set of all things

isomorphic to y in the context of z, i.e. fyI z is the set of things which can be written as p(y) for some symmetry

p of z.

Definition: An object y will be called canonical in the context of an object z just in case IYlz
is a singleton set.

There are many intuitive examples of objects which are not natural or canonical. 'Ilere is no natural

or canonical point on the perimeter of a circle. There is no canonical corner on a square. There is no natural

or canonical coordinate system for three dimensional space. On the other hand consider an oblique triangle
(where no two sides have the same length). One can choose a canonical vertex for such a triangle by choosing

the vertex connecting the two shorter sides.

There is another intuitively satisfying notion of what a canonical object is. Intuitivcly y is canonical

in the context of z if one can define a function which takes z and unambiguously returns y. This notion of a

canonical object is problematic because for any two objects z and y there is a function which maps z to y.
However one wants a definable function. Remember that the universe <U E> has many non-trivial

automorphisms and every function from U to U which is defined in terms of the structure of the universe

<U E> must respect those autoinorphisms. In particular any function F defined in terms of the structure of

<U E> must be essential in the following sense:

DeJinition: A function F from U to U will be called ('.sc.nial just in case for every symmetry
p of<U E> and cery clement x of U, I:(p(x)) equals p(F(x)).

intuitivcly die image of an object x under an essential function F can contain no more information

than the object x itself. Thus it might be said that F(x) is an abstraction of x.

/)fini/on: An objcct y wil; be called wn absiraction of an object zjust in case y equals F(7)
for Some Cssential ilinction F.

'llic main wcsult of this section relates the tie notion of camonicality, the notion of abstr;iction, and the

sytinlelry groulps of objects.
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Theorem 4.1. The First Abstraction Theorem: For any objects y an'd z the following are
equivalent:

1) A(y) contains A(z).
2) fyJz is a singleton set.
3) y equals F(z) for some essential function F.

Proof
1< = >2: If A(y) contains A(z) then for any symmetry p of z, p(y) equals y so JYlz contains only

y. On the other hand if IyI, is a singleton set then p(y) equals y for any symmetry p of z so A(/) is a
subset of A(y).

1 = >3: Given that A(y) contains A(z) an essential function F from U to U can be defined as
follows: Of course F(z) is defined to be y. For any w which is isomorphic to z let p be some point
permutation such that p(z) equals w and define F(w) to be p(y) (this is equivalent to defining
F(p(z)) to be p(F(z)) for any point permutation p). It must be shown that this definition of F(w) is
independent of the choice of p. In particular if p and p' are two point permutations such that p(z)
equals p'(z) equals w then it must be shown that p(y) equals p'(y). If p(z) equals p'(z) then

p '(p'(z)) equals z so p- .p, is a symmetry of z. But since A(z) is a subset of A(y), p-l.p' is a
symmetry of y and thus p" (p.(y)) equals y which implies that p'(y) equals p(y).

It will now be shown that for any w which is isomorphic to z and any point permutation p,
F(p(w)) equals p(F(w)). Since w is isomorphic to z there is some point permutation p' such that w
equals p'(z). Now F(p(w)) equals F(pap'(z)) which equals pop'(F(z)) which equals p(p*(|:(z))
which equals p(F(p'(z)) which equals p(F(w)). Thus for any w isomorphic to z, F satisfies the
condition for being an essential fuinction. To complete the definition of F let F(w) be w for any w
not isomorphic to z.

3=>1: Suppose F is an essential function such that F(z) equals y and let p be any symmetry of
z. Since F is an esscntial function p(F(z)) equals F(p(z)) which equals F(z). Thus p is a symmetry
of F(z), i.e. p is a symmetry of y. Thus A(y) contains A(z).

4.2. Abstraction and Points

The notion of abstraction has some important relationships to points. The first lemma about points

concerns the isomorphism classes of points in the context of an object x.

Lemma 4.2: For any object x and point p, pIx is either a subset of P(x) or is all of P(U)-P(x).

Proof. For any symmetry p of x. p(lPx)) equals P(p(x)) equals P(x). 'rhus any symmetry p of x
induces a pcrnutation of lx). 'llius for any point p in P(x). IpIx is a subset of I~x). On the other
hand for any two points r and s which are not in P(x) there is a symmetry of x which exchanges r
and s. Thus if r is not in P(x) then Irix contains all of P(U)-P(x). Furthermore for r not in 1)(x), IrIx
can not intersect P(x) since otherwise there would be some point p in P(x) such that IpIx was not a
subset of P(x). Thus either p is in 1)(x) and IpIx is a subset of P~x) or p is not in P(x) and IpIx equals

Ulrx)-m(x).

(Corollary 4.3: For any object x and point p. p is in P(x) just in case IPIx is small.
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Corollary 4.3 immcdiately implies that for any object x the set P~x) i detcrincd by the symmetry

group of x. In fact Corollary 4.3 leads directly to the following theorem:

Theorem 4.4 For any objects y and x, if y is an abstraction of x then P(y) is a subset of P(x).

Proof- L.ct p be any point in P(y). Since A(y) contains A(x), IpIy contains Iplx. But by Corollary 4.3
NY is small so JPx must also be small and therefore p must be in P(x).

Theorem 4.4 immediately implies that for any for any essential function F and any object x, PNF(x))

is a subset of P(x). It is important to realize that the converse of theorem 4.4 does not hold, i.e. if P(y) is a

subset of P(x) then y need not be an abstraction of x. For example lp q} is not an abstraction of lp q r).

4.3. Representation and Transformational Isomorphisms

Any finite set of points can be represented by a finite list of points though there is no canonical

representation for a set of points as a list of points. More precisely there is an essential function F which maps

any finite list of points to the finite set of points contained in that list and any finite set y can be written as

F(x) for some finite list x. Note that the function F is from the representations to the represented objects.

Also note that the function from representations to represented objects is onto, i.e. every object which is to be

represented must have a representation. These observations lead to the following definition of a uniform

representation.

Definition: Let C and R be subsets of U. let F be an essential function, and let F(R) denote
{F(x) for x in R}. F is said to be a uniform representation of elements of C as elements of R
just in case F(R) contains C.

Note that lists of points can not be represented as sets of points because there is no essential function

which maps a set of points to a list of those points (there is no canonical representation of a set of points as a

list). A similar example involves multisets. A list of points can be used to represent a multisct of points, but

multisets of points can not be used to represent lists.

There are certain cases in mathematics where two different (non-isomorphic) things are "essentially

the same thing". For example an equivalence relation on a set of points C is a relation, i.e. a set of pairs,

which is reflexive, symmetric, and transitive. A partition of C is a family of disjoint subsets of C. Any

cquivilence relation on C can he viewed as a partition of C and vice versa. Another simple example involves

the representation of tuples. For example a tuple of points <p q> can be viewed as the set (p {p q}} or as the

set {q {p q} }. The following definition makes the notion of"essentially the samc" more concrete.
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Definition: An essential function F from U to U which is also a permutation of U will be
called a transfonnational s)ynmelry of <U >. Two objects x and y will be called
fransfornaionally isomorphic just in case there is a transformational symmetry of <U E>
which maps x to y.

If two objects x and y are transformationally isomorphic then there is a sense in which they are
indistinguishable. More precisely the following lemma holds:

Lemma 4.5: For any transformational symmetry F there is a translation operator T which
maps any monadic essential predicate 0 to a monadic essential predicate T(0) such that for
any object x. 0(x) holds just in case T(OXF(x)) holds.

Proof. Since F is a permutation of U it has an inverse F"1 which is easily shown to be an essential
function. Let "T"(O) be the predicate Xw.O(F'l(w)). Clearly 0(x) is equivalent to T(OXF(x)).
Furthermore T(O) is easily seen to be an essential predicate.

Lemma 4.5 gives a precise relationship between objects which are transformationally isomorphic. In
particular if x and y are transformationally isomorphic via the transformational symmetry F then any essential
statement (or question) lb(x) concerning x is equivalent to some essential statement T(0Xy) concerning y. It

turns out that two objects x and y are transformationally isomorphic just in case A(x) equals A(y). However
the condition that A(x) equals A(y) does not ensure that there is a definable transformational symmetry F
which maps x to y.

Definition: A function F from U to U will be called definable just in case there is a first order
formula b of two free variables whose only non-logical symbol is E such that for any two
objects x and y, O(x y) holds in <U E> just in case y equals F(x).

Consider the real numbers <R + * <> where R is a set of points, + and * are binary operations on
R, and < is a total order on R. A(<R + * <>) is the group of all symmetries which leave every point in R
fixed (any symmetry of<R + * <> must leave one and zero fixed). Now consider a pair <R <'> where <' is
a well ordering of the set of points R. It is easy to show that A(<R 5'>) is also the group of all permutations
which leave every point in R fixed. Since A(<R + * 5>) equals A(<R <'>), <R + * <) is transfonnationally

isomorphic to <R <'>. However there is probably no definable transformational symmetry of <U E> which

maps <R + * <> to <R '>.

4.4. Context

Intuitively a context is a collection of objects which are taken to be "fixed". 'here are sonic objects
which are taken to be fixed over all of mathematics. For example mathematicians often speak of "the"

natural numbers, even though the identity of the natural numbers can not be specified (though the stncture

of the numbers can he specified up to isomorphism). The same holds for "the" real numbers, or "the"
(. complex plain. In logic one often assumes that there is a particular thing which is de constant "true" and a

particular thing w~hich is the constant 'Tialsc". A more controversial example is the empty set. There are other*1j
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examples of "context" where the context is not even specified up to isomorphism. 'llie phrase "fixed but

arbitrary" is often used in mathematical writing and serves to specify a context for a mathematical discussion.

As another example of context consider a linear vector space. A linear vector space has an associated

field (usually "the" real or complex numbers) such that any vector can be scaled by an clement of the field.

In discussions of linear vector spaces the field is usually taken to be fixed. Thus in relating two vector spaces

one usually assumes they have the same associated field of scalars.

As yet another example consider a particular first order language L. The language 1. is taken to be a

sequence of typed symbols which determines a set of well formed formulas. Such a language is usually taken

to be arbitrary but fixed in discussions of logic.

To generalize the results of the previous section it is useful to define the notion of a contextual

symmetry group.

Dejinition: The symmetry group of y in the context of z, denoted A (y), is the set of all
symmetries of z which are also symmetries of y. More simply A/(y) equals A(y) intersect
A(z).

Note that any symmetry of the pair <y z> must be a symmetry of y and a symmetry of Z, and

anything which is a symmetry of both y and z must be a symmetry of the pair <y z>. Thus A(<y z>) is the
intersection of A(y) and A(z) so Az(y) equals A(<y 7.)). The notion of an essential function can also be made

contextual:

Definition: A function F from U to U will be called essential in the context of z just in case
for any object x any symmetry p of z, F(p(x)) equals p(F(x)).

A good example of a contextually essential function is the cardinality function on finite sets. Let

<N <> be "the" natural numbers where N is a set of points and < is a binary relation which orders those

points. The function F which maps any finite set x to the natural number representing the size of x is essential
in the context of <N <>. Note that this cardinality function is not essential outside of this context because

l:(x) can be a point not found in x. The following lemma provides an alternative characterization of functions

which are contextually essential.

I.cnni 4.7: A function F from U to U is essenti i, in the context of z just in case it can be
written as Xx.G(<x t>) fbr some essential function G.

Proof If F can he written as Xx.G(<x z>) then it is easy to show that F is essential in the context of
z. On the other hand issume F is essential in the context of z. First if w is not a pair whose second
component is isomorphic to z, then G(w) is defined to be w. If w is a pair w\hose second component
is isomorphic to z then w can be written as p(<x z>) tor some object x and point permutlation p. In
this case (w). which can be written as G1(p(<x z>)). is delined to be p(l(x)). It must first be shown
that G is well defined. i.e. that if p(<x z>) equals p'(<y z>) then p(I.'(x)) equals p'(-(y)). First note
that p'l(p.(<y z))) eq|uals <x /> so p-(p(y)) equals x and p-I(p.(z)) equals i. Thus p-lfp, is a

symmetry ofz. Now since F is essential in the context ofi. p'lOp'(I:-(.)) e(t1Ials I:(p p'(y)) which

equals F(x). Ilia if F(x) equals p"1 p'(F(y)) then p(F(x)) must equal p'(:(I)).
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It follows directly from the definition of G that G(<x z)) equals I(x) tnd thus F can be written
as Ax.G(<x z>). To show that G commutes with arbitrary point permutations let w be any object
and p be any point permutation. If w can not be written as p'(<x z>) for some x and p' then G(w)
equals w and G(p(w)) equals p(w) so the result is trivial. On the other hand suppose w can be
written as p'(<x z>). In this case G(p(w)) equals G(pop'(<x z>)) which equals pop'(F(x)) which
equals p(G(p'(<x z>))) which equals p(G(w)).

The following abstraction theorem is a generalization of the first abstraction theorem.

Theorem 4.8, The Second Abstraclion Theorem: For any objects x and y and context z the
following arc equivalent:

1) Az(y) contains Az(x)
2) IyJ<x z> is a singleton set
3) y equals F(x) for some function F which is essential in the context of z

Proof. The first condition is equivalent to the statement that A(<y z>) contains A(<x 7)). The
second condition is equivalent to the statement that J<y z>)<x o is a singleton set. Finally lemma
4.7 implies that the third condition is equivalent to the statement that <y z> equals G(<x z>) for
some essential function G. Thus the equivalence of these three statements follows directly from the
first abstraction theorem,

4.5. Essential Predicates

Essential functions have been shown to play an important role in characterizing the nature of

abstractions and the notion of a natural or canonical property. Essential predicates are closely related to
essential functions and can play much the same role in constructing abstractions.

Definition: A binary predicate (D on U is called essential if for any objects x and y and point
permutation p, 0(x y) holds just in case 0(p(x) p(y)) holds.

The relationship between predicates and functions can be made more explicit by defining a monadic

function F0p for each binary predicate 0.

Definition: For any binary predicate 4) on U, F0 is the function from U to subsets of U such
that F0 (x) equals {y: 0(x y)}.

For example let 0 be the predicate such that 4(x y) holds just in case y is a pair whose first
component is x. In this casw F'O(x) is the set of all pairs whose first component is x. Note that FD(x) is a large
set and thus has no representation in <U E. '[hus in general F4, can not be thought of as a function frio U

to U. 'i[e following definitions will be useiul in discussing the functions associated with essential predicates.

Definition: [.et C be any subset of U. P(C) is the union over x in C of P(x). For any point
permutation p. p(C) is the set {p(x): x in C. The symmetry group of C. denoted A(C). is

C the set ofall point pernmntlins j such thit p(C) equals C. lhe ioltorpllhism11 class IU'l ol'C

in the context of' an object z is the Family orf all sets which can be '% rittcn as p(C) for ome
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point permutation p.

For any essential predicate 0 the function I:4 commutes with point permutations. i.e. F(p(x))

equals p(Fl:(x)). Thus FO can be thought of as an essential function. I loweer as die above example shows

l: (x) can be large and P(FO(x)) can be all of P(U). Thus some of the theorems concerning essential

functions do not apply to F0 . iowever many of the results concerning essential functions can be generalized

to the functions associated with essential predicates.

Theorem 4. 0, The Third Abstraction Theorem: For any object z and (possibly large) subset C
of U the following are equivalent:

1) A(C) contains A(z)
2) ICIz is a singleton family
3) C equals FP(z) for sonic essential predicate 0P.

The proof of the above theorem is analogous to the proof of the first abstraction theorem. In

showing that 1) implies 3) the predicate 0D is defined by setting O(p(z) p(y)) to be true for any point

pcrnmutation p and any clement y of C, and ((w x) to be false if <w x> can not be written as <p(z) p(y)> for

some y in C.

Essential predicates can be thought of as defining abstraction functions from objects to mno,e

abstract objects. For an essential predicate D and object x it does not seem very important that -'0 (x) may be

large, the important point is that the symmetry group of F0 (x) contains the symmetry group of x.

A good example of the use of essential predicates in defining abstractions is a multiset. let f and g

be two finite functions (they each have a finite domain). The functions f and g will be said to represent the

same imultiset if there exists a bijection a from the domain of f to the domain of g such that for any x in the

domain of f, f(x) equals g(a(x)). Intuitively f and g represent the same multisct if for any range element y. f

and g map the same number of objects onto y. Let 0 be the binary predicate on U such that 0(fg) holds just

in case f and g are finite functions which represent die same multiset. It is easy to show that P is an

equivalence relation on finite functions and that t:() is the equivalence class of f tinder this relation. [he

symmetry group of F0 (f) is not the full permutation group on P(U) but is larger than the symmetry group of

C Thus F0p(o can be thought of as die multiset abstraction of f.
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5. RELATION TO OTIER WORK

The notions of isomorphism, symmetry, and representation arc ubiquitous in mathematics and

probably have numerous independent origins. The relationship bctwcen symmetry and permutation groups

is also well known. This relationship has been studied in some dctail and it has been shown, for exa, plc, that

not every permutation group can be represented as the symmetry group of a graph [Biggs 741. But while the

notions of isomorphism and symmetry have been extensively used for objects of a given type (e.g. graphs,

groups, algebras, languages, grammars) these particular notions of isomorphism do not provide a notion of

isomorphism defined over all mathematical objects.

Category theory provides one general approach to the notion of isomorphism. A category can be

thought of as a directed multigraph with an associative composition operator o on arcs and for each node n an

assigned "identity" arc from n to n. The nodes of a category arc often associated with sets and the arcs with

functions between these sets. Thus the arcs are called "morphisms". An isomorphism is defined to be an arc

p Ahich has an "inverse" arc p-1 such that both pop " 1 and p'lop are identity arcs [Schubert 72]. Category

th ory provides a general theory of isomorphism to the extent that every mathematical object can be thought

of as a node ("object") in a category. For example a group can be thought of as a node in the category of

groups, a graph as a node in the category of graphs, etc. However the category containing a given object must

be defined separately for each type of object. In fact the category containing an object of a given type is

usually defined in ienns of the notion of isomorphism (and homomorphism) for objects of that type.

Therefore category theory does not provide any satisfying general notion of isomorphism for arbitrary

mathematical objects.

The notion of a type used in universal algebra and computer science provides another approach to a

general definition of isomorphism. An algebra is a domain together with some functions defined over that

domain. In the universal study of algebras each particular algebra has a iypc (or signaurc or /lnguagc) wvhich

is a set of s~mbols which are interpreted by that algebra. For example the type of a group is ie single binary

finction symbol o. [here is a natural definition of isomorphism for the algebras of a fixed t)pc such that tv o

algebras A and B are isomorphic just in case there is a bijection from the domain of A to the domain of 11

which maps A's interpretation of any symbol to It's interpretation of that symbol.

The notion of type also plays a critical role in many modern computer languages flennant 811.

There is one particular outlook on the types of computer data structures which pro% ides a basis for a notion of

isomorphism. Under this view a type is a collection of objects which can be defined in a "natural" way from a

collection of base types. For example if A and B are base types then the set of functions from A to I is also a

t~pc. Similarly the set ofpairs AXU ofan element of A and an element oflI is a type. As another example let

the type SubSecs(AXA) be the collection of all sets of ordered pairs of elements of the base type A. More

simply SubSvt,(AXA) is the type containing all directed graphs whose nodes are menhers of A. Sevcr, l

people ,tudying such data types and have employed permutations of the elements of base t\ pes to de'file a

notion ofa '' mh1tilal" finction bicteen types [Aho & Ullman 79] II)unl,,in., & Yap 82). In 1Ictl I ) an.iii? amld
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Yap implicitly usc a nutiof of isoniorphism based on permnutations of the ceficnis of' basc typcs in defining

die automorphism group of an arbitrai y typed object.

While there arc strong similariuics between symmetric set theory the abovc nmcntioned work on data

types (especially that of Dunlaing and Yap) there is also an important difference. Symmentric set thcory bases

dic notion of isomorphism on points rather than types. When the notion of isomorphism is based on points

the isomorphism class of an object is an cssential property of the object and does not depend on viewing that

object its an instance of some type (or as a member of some category). Thius it can be argued that the need for

types (or categories) in defining the notion of isomorphism is a byproduct of the fact that ur-elements were

left out of set theory.
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7. APPENDIX: CONSISTENCY AND CIHARACTERIZATION TI IEOREMS

This section contains some results concerning the existence and nature of universes <U E> of
symmetric sets. It is shown that the existence of a universe <U E> of symmetric sets is equivalent to the
existence of a strongly inaccessible cardinal. It is also shown that a universe <U E> of symmetric sets is
completely characterized by its "height" and "width". 'lhesc results provide insight into two obvious
questions. First. are the axioms for symmetric sets consistent? Second, to what extent are die axioms
categorical. i.e. under what conditions arc two universes isomorphic?

7.1. Consistency and Strongly Inaccesible Cardinals

lhere does not seem to he any satisfactory proof that there exists a universe of symmetric sets.
Ilowever i simple condition can be giken which is equi%alent to the consistency of the axioms of symmetric
set theory. In essence the consistency of the axioms depends purely on the consistency of axioms three
through fihe (infinity, power set. and union). Axioms three through five characterize what is known as a
strongly inaccessible cardinal. I hus the axioms of the theory of symmetric sets are consistent just in case there
exists a strongly inaccessible cardinal. This result is of interest because strongly inaccessible cardinals have
been studied in the context of Zennello-Fraenkel set theory and it is generally believed that it is impossible to
prove that strongly inaccessible cardinals do not exist. Thus there is strong c'idence that the theory of
symmetric sets will never be proven inconsistent.

Definition: A set U will be said to have a sirongly inaccessible cardinality just in case it meets

the follo%% ing conditions:

1) U is uncountably infinite

2) If C is a subset of U smaller than U then the power set of C is also smaller than U.

3) For any family F of subsets of U if F is smaller than U and every member of F is smaller
than U then the union of all members of F is smaller than U.

flie main result of this section will be proven in two parts. First it will be showsn that any set U

which is larger than some inaccessible cardinal can be expanded to a model <U E> of axioms one through six

(the foundation axiom is initially ignored). It will then be shown that any model (U E> of axioms one

through six contains a substnicture (U' E> which also satisfies axiom seven (foundation). 'hese two results

ill lead directly to the main result that a set U can be expanded to a universe <U E> just in case U is larger

than some strongly inaccessible cardinal.

For any set C let SIn(C) be the family of all non-empty subsets of C which are smaller than C. The

follo-wing lemma concerning Sn(C) is a standard result of set theory and will be stated without proof:

lemma ..I. 1: For any in finite set C, Sin(C) is the same size as C.

The next leimma is a direct predecessor to the main result of this section.

rI
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Lemma A.2: Any set U which is larger than some strongly inaccessible cardinal can be
expanded to a model <U E> of axioms one through six.

Proof. To ensure that there will be a large number of points a subset P(U) of U is chosen such that
both II(U) and U-P(LJ) are the same size as U (this can always be done for any infinite set U). Since
U is larger than some strongly inaccessible cardinal we can choose somc subset U" of U with a
strongly inaccessible cardinalit . let Sm(U U') denote the family of all non-empty subsets of U
which are smaller than U'. Since since Sm(U U') is a subset of Sin(U) lemma A.1 implies that
Sm(U U') can be no larger than U. On the other hand Sm(U U') contains all the singleton subsets
of U and thus Smn(U Ur) is as large as U. Thus Sm(U U') has the same cardinality as U and there is
a bijection f from U-P(U) to Sn(U U') such that each element x of U-P(U) represents some
non-empty subset ax) of U which is smaller than U' and every such subset has a unique such
representation. The relation E is now defined such that xEy just in case y is in U-P(U) and and x is
in fQy). The resulting structure <U E> clearly satisfies axioms one and two (extensionality and
strong comprehension). A subset of U is small in <U E> just in case it is smaller than U'. llhe
definition of a set with strongly inaccessible cardinality now directly implies that <U E> satisfies
axioms three through five (infinity, power set, and union). The fact that P(U) is as big as U implies
that <U E> satisfies axiom six.

It can also be show n that any model of axioms one through six can be used to generate a model which also

satisfies foundation.

lemna .13: Any model <U E> of axioms one through six contains a substructure which is a
model of axioms one through seven.

Proof' An element x of U will be called a well founded element if there are no infinitely
decreasing E chains containing it. Let U" be the subset of U consisting of the well founded
elements of U. The substructure <U' > clearly satisfies the foundation axiom so it is sufficient to
show that it also satisfies axioms one through six. Note that every point is well founded so P(U) is
contained in U' and thus by the point comprehension axiom U is a large subset of U. If x is a well
founded element of U then every y such that yCx is also well founded and thus any well founded
element represents the same subset of U whether it is %iewcd as an element of <U E> or as an
element of <U' E>. Since no two elemcnts of U represent the same set Linder <U E> no two
elements of U represent the same set under <U' E> and so <U' E> satisfies extensionality. To show
that <L' E> satisfies the strong comprehension axiom let C be any subset of U' which is small with
respect to <U C>, i.e. there is an x in U which represents C. Since every member of C is well
founded x must also be well founded and thus x is in U' and thus C is represented in (U' E>. Thus
every subset of U' which is small with respect to <U C> is represented in (U' E>. On the other
hand no set which is large in <U E> can be represented in (U' E>. Thus a subset of U' is
represented in U' E>just in case it is small with respect to <U E>. The fact that U' is large and that
a subset of U' is small in <U' E> just in case it is small in <U C> immediately implies that <U' E>
satisfies the axioms of infinity, power set and union. Since U' contains P(U) the number of points
in U' is large so <U' E> also satisfies the point comprehension axiom.

I.emmas A.2 and A.3 lead directly to the main result of this section.

Theorem A.4: A set U can be expanded to a model <U E> of the axioms of symmetric set
theory just in case U is larger than some strongly inaccessible cardinal.

I'roof If U is larger ihat some strongly inaccessible cardinal then by lemma A.2 it can 'be
cxpanded to i. model <U C> of axioms one through six such that I(U) is the same size as L. Ily
le"imma A.3 ihere is a sublitrtcture <lJ' E> of<U C> which contains INUt) and which satisfies all of

1the axioms of s mnietric Net theory. But since U' has Ihe same cardinality as U it is also possible ito

MOM
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directly extend U to a model <U E> of all of thc axioms.
On the other hand if U can bc expanded to a model <U E> of axioms two through five (strong

comprehension, infinity. power set, and union) then it is easily shown that U must be larger than
some strongly inaccessible cardinal.

7.2. The Height and Width of a Universe

A universe <U E> of symmetric sets is characterized (up to isomorphism) by two "numbers", its
height and its width. The height and width of a universe <U E> are defined as follows:

Definition: The width of a universe <U E> is defined to be the cardinality of its set of points
P(U). A subset C of U will be said to be minimally large in <U E> if no subset of C which is
smaller than C is large in <U E>. The height of a universe <U E> is defined to be the
cardinality of any minimally large subset of U.

lie following lemma can be demonstrated directly from the comprehension axioms.

Lemma A.5: The height of any universe <U E> is a strongly inaccessible cardinal.

The constructions used in the consistency theorems of the previous section show that for any
strongly inaccessible cardinal there is a universe with that height. Since P(U) is required to be a large set the
width of a universe must always be at least as large as its height. The constructions used in the consistency
theorems further show that the width of a universe can be any cardinality larger than its height.

A universe can be thought of as a rectangle which is no higher than its width. The points of the
universe should be thought of as lying along the bottom edge of this rectangle. The main theorem of this
section can be proven directly.

Theorem A.6: Any two universes of symmetric sets with the same height and width are
isomorphic.

Proof. Let the universe be <Uj Cl> and <U2 E2>. Since both universes have the same height a
set is small with respect to one universe just in case it is small with respect to the other universe.
Shice PU) and P(U2) are the same size there exists a bijection p from P(UI) to P(U 2). The
function p can be extended to a function a from all of U1 into U2 via tie following inductive
definition:

u(p) = p(p) for any point p in P(UI)

a(x) = the representation for {a(y): yEIxl for x not a point

I'he set on the right side of the second equation is guaranteed to have a representation in U2
becamse it is no larger than the set represented by x. It is easy to show by induction on x under
E - that o(2)0E2o(x) just in case yC ix. To show that a is a bijection it is sufficient to construct an
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inverse function U "I such that for any x in U1  'l(u(x)) equals x and for any y in U2 a(0' (y))

equals y. The inverse function & "I is defined by extending pI from P(U 2) to all of U via a relation

analogous to that above. The two conditions relating o and a can then be proven by induction on

E1
+ and E2 + respectively.

here a few other results which help to charactrizc a universe (U E>. Thiese rsults will be stated

briefly without proof. First it can be shown that in general the size of U equals the size of P(U) (which is at

least as large as the height of U). Second the notion of "rank" used in ZF set theory can also be defined for
symmetric sets. The details of this definition are not important but one result concerning a charactcrization of

small sets will be mentioned. For any subset C of U let P(C) be the union over x in C of lKx). It turns out

that a subset C of U is small just in case P(C) is small and the rank of C is less than the height of the universe.
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